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I SOME COMMON-SENSE OPTIMIZATION TECHNIQUES FOR
NON-DIFFERENTIABLE FUNCTIONS OF SEVERAL VARIABLESI

ABSTRACT:

The problem of obtaining global optima of non-differentiable

II functions of several variables is studied. In general, the func-

tions are multimodal and continuous on a compact domain. Two

distinct methods are proposed and to some extent compared: The

method of systematic search and the random search technique. The

method of uniform saturation [the one variable version of the

I. systematic search method] is based on bisecting the interval (in

the one-variable case) repeatedly. Without loss of generality,

we may restrict the discussion to the closed unit interval

I = [0,1]. At the first stage, n = 1, bisect the interval I using

the point x = 1/2. Let M, = max [f(i/2),f(l)]. At the second

stage, n = 2, bisect each of the intervals [0,1/2] and [1/2,11 us-

ing the points x = 1/4 and x = 3/4 respectively. Let M2

[ml,f(l/4),f(3/4)]. By the nth stage we would have subdivided

the interval I into 2n subintervals, each of length (1/2 )n, where-

in the partition points over and above those previous stages are

i(l/2)n, i = 1 ,3 ,..., 2ni. Thus the Mn's are inductively given by

Mn = max[Mn-lf(i/2n); I = 1,3,...2nl 1 ]. It is now clear that Mn

is monotonic increasing sequence, M1 < M2 < M2 < . . . If we re-

I peat the procedure enough times, we would "saturate" the interval

* I by evenly spaced points in such a way that the distance between

I~i[
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1two neighboring points diminishes geometrically as n-increases.

Thus we "zero-in" on a solution of the problem. This method is

later modified to the case of functions of two or three variables.

The Random Search Technique used here determines all the

optimal points of the non-differentiable continuous functions with

many variables defined on compact domain. The procedure begins

with evaluating the given function at pre-determined number of

points selected randomly over the closed bounded domain. Suppose

m points are selected randomly over the domain and the function

is evaluated at each of the m points. The minimum functional

value and the point at which the minimum occurs (if the problem is

e one of minimization) are saved. This step is carried out n

times, where n is sufficiently large. The resulting n points

will cluster around the minima. Suppose there are r cluster

points, then there is a possibility that around each cluster point,

a local minimum may exist. We develop a single program to find

all the cluster groups as well as cluster points using a local

1 optimization routine. Thus the global minimum is obtained by

simple comparison. The new method developed here is clearly an

improvement with regards to time and accuracy over the methods pro-

posed by Becker and Lago and Price's CRS procedure.
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INTRODUCTI ON

There are many optimization procedures which enable one to

determine the minimum of a unimodal function in n-space. If the

function is differentiable in a compact domain, global minima may

be obtained through the use of derivatives. However, the pro-

blem of global optimization of multimodal function has received

comparatively little attention, more so when the function in ques-

tion is non-differentiable. No efficient method has been developed

to tackle glral optimization problems.

As a general principle, the accuracy with which a procedure

locates optima improves with the number of functional evaluations.

In principle, however, one seeks a balance between a degree of

certainty and the cost of implementation. A procedure which lo-

cates optima with great precision and certainty would be practical-

ly worthless if it requires economically unfeasible number of cal-

culations.

There are several methods presently utilized to seek global

optimua; among them are those suggested by Brooks [11, Becker and

Lago [2] and Price's CRS method [3]. The Simple Random Method ac-

cepts the optimum function value as global optimum after making a

specified number of trials randomly selected from the domain. The

stratified Random Search method divides the domain into a number

of subdomains of equal size and selects, at random, a trial point

from each subdomain and each time keeps the optimal function value.

The procedure is repeated a good many times. Some improvement on

the simple random search is provided by Becker and Lago. Their

1
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procedure begins with a Simple Random Search over the domain, in-

stead of retaining the single point with the optimal function

value, Becker and Lago retain a predetermined number of points with

optimal function values in each trial. If the number of trials is

sufficiently high, the retained points tend to cluster around some

optima. Then a mode seeking algorithm is used to group the points

into discrete clusters and to define the boundaries of the sub-

regions each embracing a cluster. The clusters are graded, by

searching in each for the retained points with the lowest function

value and then rated according to the relative values of the clus-

ter minima. The entire procedure is then repeated using as the

initial search region that subdomain, defined by the mode seeking

algorithm around the 'best' cluster. The user may choose to ex-

amine also the second best cluster, or indeed all clusters, accord-

ing to the extent of his doubt as to whether or not the global

minimum will be found in the subdomain defined by the best cluster.

*The controlled Random Search (CRS) suggested by Price is

* similar to Becker and Lago, but CRS combines the random search and

mode-seeking algorithm into a single continuous process. But the

problems of inefficiency and economic consideration still remain.

METHOD OF SOLUTIONS

This paper deals with two methods: (I) Systeriatic Search (The

Method of Uniform Saturation), (II) Random Search. -In both cases

it is assumed that the functions are defined and continuous on a

*compact domain. They are also assumed to be multimodal functions.

* In general the systematic search does not provide all the optimal

points, the primary emphasis here being location of a global optimum.

1 , °I-
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Despite several restrictions and difficulties, the Random Search

method attempts to obtain all the optima, one optimum point in

each mode.

I., I. SYSTEMATIC SEARCH (The Case of Two or Three Variables)

Suppose f(x,y) is continuous on the closed unit square

S = (x,y):0 < x,y < 11. Then certainly a subdivision of the inter-

val [0,1] into, say, 50 equal subintervals would have to be con-

sidered as a reasonable partition. That is to say, 50 is a reason-

ably small number. Yet even with 50 partition points on each of

the x and y axes, we are faced with 50 x 50 = 2500 partition

points of the unit square S. For the case of a function f(x) of

one variable, we certainly would want to partition the interval

[0,11 into MORE than 50 subintervals to get a reasonable assurance

that an optimum has been included. Hence we cannot be confident

that the global optimum will be among the values at the 2500 parti-

tion points of the square S.

The case of a function of three variables is much worse. Here

a subdivision of each co-ordinate AXIS into 50 partition points re-

sults in 50 x 50 x 50 = 125,000 points of the cube. This is just

to get a crude starting point. Hence we see that the number of

evaluations becomes prohibitive very rapidly and so, to have any

hope whatsoever of handling the multivariable case, we would have

to abandon the purely exhaustive scheme (Method of Uniform Satura-

tion) used in the univariable case.

The proposed method is based on two steps. The first step

involves consideration of an initial grid on the domain. An initial

[-
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point is then obtained based on the grid. The second step starts

with the initial point and proceeds by the method of 'crossings'.

Any direct search procedure such as the one presently given

would require a large number of evaluations. For a function f(x,y)

of two variables on a rectangle, we consider 100 partition points

on each of the x and y axes to be reasonable. This gives rise

to 100 x 100 = 10,000 partition points. We realize that 10,000

evaluations might not be cost-effective and that other more effi-

cient methods might be employable. The fact remains that this

procedure is direct, simple to execute and self-contained (not

based on other search procedures already in existence).

Several theorems pertaining to functions of two variables are

proved and some twenty one illustrative, computational examples are

provided. These examples comprise Tables 1, 2 and 3. The computer

programs are given in Appendix A.

[-1
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The One-Variable Case: (The Method of Uniform Saturation)

Consider the non-linear programming (NLP) problem: MAXIMIZE

f(x) : a < x < b, where f I R is a continuous real-valued

function defined on the closed interval I = (a,b]. Without loss of

generality, we may restrict the discussion to the closed unit in-

terval I = [0,1]. At the first stage, n = 1, bisect the interval

I using the point x = 1/2. Let Ml = max {f(i/2),f(l)}. At the

second stage, n = 2, bisect each of the intervals [0,1/2] and

[1/2,1] using the points x = 1/4 and x = 3/4 respectively. Let

M2 = max Ml,f(i/4),f(3/4) At the third stage, n = 3, bisect

each of the intervals [0,l/41,[l/4,1/2],[l/2,3/4], and [3/4,11 us-

ing the points x = 1/8, x 3/8, x = 5/8, and x = 7/8 respectively.

Set M3 = max{M 2 ,f(i/8) : i = 1,3,5,7}.

By the n'th stage we would have subdivided the interval I in-

to 2n subintervals, each of length (1/2 )n, wherein the new parti-

tion points over and above those of the previous stages are

i(i/2)n : i = 1,3,..., 2n - 1. Thus the Mn's are inductively given

by Mn = max {Mn.l,f(i/2n) : i . 1,3,..., 2n - 11. It is now clear

that Mn is monotone increasing, viz. M1 < M2 < M3 ... If we repeat

the procedure enough times, we would "saturate" the interval I by

evenly spaced points in such a way that the distance between two

neighboring points diminishes geometrically as n increases. Thus

we "zero in" on a solution of the problem. That is, if xo SOLVES

the problem, then there is a bisecting point xk WITHIN ANY PRE-

SCRIBED DISTANCE from x.. Thus if c > 0 is preassigned, we are as-

sured of the existence of an xk for which jxk - xoI < c whenever

LI
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n is such that 2n > l/e. Since the function f(x) is continuous,

we know that f(xk) will be close to f(xo) whenever xk is "suffi-

ciently" close to xO .

The Two-Variable Case

We next consider a real-valued function f(x,y) which is con-

tinuous on the closed unit square S = {(x,y): 0 < x,y < 1}. The

non-linear programming (NLP) problem is: MAXIMIZE f(x,y) : (x,y) E S.

Theorem 1 Let f(x,y) be a real-valued function which is continu-

ous on a compact domain D. Then

MAXIMUM f(x,y) = MAX {MAX f(x,y)}, where for
(x,y)cD xeDy yEDx

each fixed x, Dx = {y : (x,y)e D) and for each fixed

y, Dy = x:{ (x,y) E D}.

Proof Clearly MAXIMUM f(x,y) > MAX {MAX f(x,y)}. Suppose
(x,y)cD xEDy yeDx

that the inequality is strict:

MAXIMUM f(x,y) > MAX {MAX f(x,y)}. Say
(x,y)eD xeDy yED x

MAXIMUM f(x,y) = f(xo, yo)

then f(xo, yo) > MAX {MAX f(xy)}
xEDy yEDx

> MAX f(xo , y)
YEDx

> f(xo, yo), a

contradiction.

As a corollary, we have:

If f(x,y) is continuous on the closed unit

square S, then
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MAXIMUM f(x,y) MAX { MAX f(x,y)} =(x ,y) S 0!x<l 0. Y.l

MAX {MAX f(x,y)}.
0<y<l 0<x<l

We point out that the assumption of continuity cannot de

weakened to separate continuity as the following example shows.

Example 1 (xy/(x4 + y4 ) if (x,y) e S - (0,0)

f(x,y) =
0 if (x,y) = (0,0)

Theorem 2 Let f(x,y) be continuous on the unit square S. For

each a c [0,11, define h(a) = MAXIMUM f(a,y). Then the

function h: [0,11 - R is continuous.

Proof
Let a e [0,1] and let E > 0 be given. Uniform con-

tinuity of f(x,y) implies the existence of 6 = 6(E) > 0

such that jf(a,y) - f(x,y)l< c whenever Ix - al < 6.

Take x such that Ix - al < 6 and let the maximum of

f(a,y) over y occur at y and let the maximum of f(x,y)

over y occur at y. That is, h(a) = MAXIMUM f(a,y) =
0 y<l

f(a,y) and h(x) = MAXIMUM f(x,y) = f(x,y).0. <_y1

Then ff(a,y) - f(x,y)f < c and If(a,7) - f(x,y)j < r

f(a,j) < f(x,y) + e < f(x,y) + e and f(a,7 ) - f(x,y)>-c

f(a,y) - f(x,y) < C and f(a,y) - f(x,y)>-c.

Thus If(a,y) - f(x,y)l < e whenever Ix - al < 6 or

Ih(a) - h(x)l < E whenever Ix - al < 6. This shows

h: (0,11 - R is uniformly continuous on (0,1].

m. &
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The example cited earlier shows that the assumption of con-

tinuity on f(x,y) in Theorem 2 cannot be relaxed to separate con-

tinuity.

Example 2 (xy/(x4 + y4) if (x,y) E S - {(0,0)}

f(x,y) 0 if (x,y) (0,0).

It is easily verified that here the function h(a) = MAXIMUM f(a,y)
0y1<l

is given by:

3 if 0 < a < 1
4F3a 2 )

h(a) =

0 if 0 = a. That is, h(a) is not

continuous at a = 0.

The next theorem appeared as Problem E 2854 and its solution

in the April 1982 issue of the American Mathematical Monthly.

Theorem 3 Let f(x,y) be a real-valued continuous function on the

unit square S = {(x,y) : 0 < x,y < 1}. Additionally,

suppose that for each a E [0,1), the maximum of f(a,y)

over y occurs at ONLY ONE value of y, say MAXIMUM f(a,y)=
0<y<l

f(a,y*(a)). Then the assignment a * y*(a) defines a

continuous function y* : [0,11 - [0,1].

Proof The proof is by contradiction. Suppose y* is not con-

tinuous at some a £ [0,1]. Let {an) be a sequence in

[0,1] convergent to a such that bn = y*(an) fails to

converge to y (a). Since {bn) is a sequence in a corn-

pact space, we may assume, without loss of generality,

iii
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that {bn } converges to some number b e [0,1] (otherwise we select

a convergent subsequence). Let f(a,y*(a)) - f(a,b) = e. Since

f(a,y*(a)) = MAXIMUM f(a,y) we see that f(a,y*(a)) > f(a,b); i.e.,
0<y<l

c > 0. The uniqueness of the maximum implies that e > 0. For if

= 0 then f(a,y*(a)) = f(a,b) or BOTH y*(a) AND b maximize f(ay)

and y*(a) = b, violating the assumed uniqueness of the maximum.

We have:

jf(a,y*(a))-f(a,b) I < If(a,y*(a))-f(an,bn)I + If(an,bn)-f(a,b)I

= Ih(a) - h(an)I + If(an,bn)-f(a,b)I

where h is as defined in Theorem 2.

Theorem 2 together with the fact that an - a implies that

Ih(a) - h(an)I < 1/2c whenever n is sufficiently large. Also, con-

tinuity of f(x,y) together with the convergences an - a and bn - b

implies If(an,bn) - f(a,b)l < 1/2e whenever n is sufficiently large.

Thus taking n so large that BOTH l/2e-inequalities hold simultane-

ously we obtain the following contradiction:

f(a,y*(a)) - f(a,b)I < 1/2E + 1/2E

C < C.

We acknowledge our gratitude to Dr. Charles Giel (formerly of A&T

State University) for the proof of Theorem 3 above.

In a private communification, Professor R. A. Struble of North

Carolina State University, gave the following solution to Problem

E 2854 and hence an independent proof of Theorem 3.

Alternate Proof of Theorem 3 (Direct Proof)

Let a [0,1] be given and let {an be a sequence in (0,1] such

an - a. We show y*(a n ) - y*(a). The sequence {y*(a n )} is in the
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compact space [0,1] and hence we may assume that {y*(an)} is con-

vergent to some number b c [0,1] (otherwise ve select a convergent

subsequence). Continuity of f(x,y) implies that f(an,y*(an)) -f(a,b)

and f(any*(a)) - f(a,y*(a)). From the definition by y*, it fol-

lows f(a y*(an)) > f(anY*(a)) Thus

lim f(an,y*(an)) > lim f(an,y*(a)) or f(a,b) > f(a,y*(a)). The

last inequality says b maximizes f(a,y) over y so that uniqueness

of the maximum now implies b = y *(a); i.e., y*(a n ) - (a).

The proof of Theorem 3 published in the American Mathematical

Monthly is shorter than either of the proofs given here; however

the published proof relies on a compact graph theorem and, in our

opinion is less instructive. Problem E 2854 asks if Theorem 3

may be generalized as follows. Suppose the requirement of the

uniqueness of the maximum is no longer imposed and the function

y [0,1] -) [0,1] is modified so that y*(a) = MIN {y:y maximizes

f(a,y)}. Does the assignment a - y*(a) define a continuous func-

tion y* : [0,1] - [0,1]? The answer is NO! The following counter-

example is given in the American Mathematical Monthly.

Example 3 (0 a < 1/2
f(x,y) = (x-i/2)(y-i/2). Here y (a)= 1  a > 1/2

Professor J. G. Mauldron of Amherst College points out that

the function of Example 3 is unsatisfactory because it fails to

satisfy the uniqueness property miserably at a = 1/2 in the sense

that the set {y:y maximizes f(i/2,y)} = [0,1] and offers the follow-

ing example instead.

Example4 f(x,y) - (x-y) 2 . Here y* (a) : < 1/2.

0 a
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For the function f(x,y) of Example 4, the departure from the

uniqueness condition is MINIMAL in the sense that the {y:y maximizes

f(a,y)} is a singleton for a + 1/2, while the set {y:y maximizes

f(1/2,y)1 = {0,1}.

Professor Mauldron offers the following example to illustrate

that the continuity requirement on f(x,y) in Theorem 3 cannot be

relaxed to separate continuity.

Example 5

SYif x = 0
ffyxx-y)2

f(x,y) 8y(x-y)/x2 if x + 01.
The function f(x,y) satisfies the uniqueness condition but is only

1 separately continuous. The induced function y*(a) is discontinuous

at a = 0:

()" I 1 if a= 0

f/ 2 a if 0 < a <_ 1

Looking at Examples 3 and 4, one may be tempted to conjecture that

y *: [0,11 - [0,11 enjoys the property of one-sided continuity.

Professor Richard Tucker of A&T State University gives the follow-

1ing counter-example.
IExample 6 f(x,y) : 0 < x < 1/2, 0 < y < 1F (x,y)

F~x~ L ff(l-x,y) : 1/2 < x < 1, 0 < y <1

where f(x,y) is as in Example 4 or f(x,y) = Ix - yl.

I1 p : 0< a < 1/2

Here y* (a) = 0 : a =1/2

1 : 1/2 < a < 1.

[
LI



I. COMPUTATIONAL EXAMPLES

Aaron Chew wrote the BASIC programs for use on Texas Instru-

ments 99/4A personal computer with Extended Basic module and

Peripheral Expansion System. We express our deep appreciation to

Aaron for his programming assistance.

The TWO-VARIABLE PROGRAM is based on the following procedure.

Let f(x,y) be defined on the closed rectangle R = { (x,y) :a < x < b;

c < y < d . First use an Initial Grid on the rectangle obtained by

putting evenly spaced points on the sides of the rectangle lying on

the co-ordinate axes:

a = xO0 < xI1 < x 2 < .. < x M = b; c = yo0 < Yl < Y2 < ""< YM = d

where xi = a + i(b-a) andyj = c + j(d-c). The procedure first
2.M )M

produces an initial approximation (x,y) based on the points

(xi,yj ) of the initial grid. The Main Program then uses (xy) as

STARTING POINT and procedes as follows. Fix x = x and minimize

f(x,y) over y E [c,d] using evenly spaced partition of the type

used in the one-variable case; namely, evenly spaced points (1/2 )N

apart. Say MIN f(x,y) occurs at y = yI" Next minimize f(x,Y
y

over x E [a,b], again using points that are (1 / 2 )N apart. Say

MIN f(x'Y occurs at x = x 2 " Refer to as the second

CROSSING. Repeat as often as desired.

12
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II. RANDOM SEARCH

The domain of the function is closed and bounded and it will

always be possible to select the initial starting points at the

*boundary. All the examples discussed here are of functions whose

domains are of the shape of hypercubes, ai < xi < bi. Therefore,

starting points may be taken as a., i = 1,2,3,... The next point

may be taken as ai + c, where e = (bi - a )/N, if one decides to

use N points to obtain the first minimum. It is not really impor-

tant which formula is used to generate points over the domain, as

long as those domains are searched repeatedly without duplication.

We evaluate at the first N points just generated and store the

* minimum and the coordinates of the minimizing point. We repeat the

procedure M times. Therefore, in all M minimum values are saved

together with the coordinates of the minimizing points. All the

generated points have to be tested whether they belong to the do-

main before they can be used. The essential features of the al-

gorithm are indicated in the flow-diagram (Figure 1).

The M stored points should cluster around the minima. An il-

lustration of this concept is shown in Figure 2. The main task of

this procedure is to locate all the cluster groups. We have achiev-

ed only partial success in reaching this objective because of a pro-

blem described below:

If some of minima lie very near to each other, this procedure

cannot separate the clusters, because the radius of the hypersphere

which embrace these cluster points should be very small and there-

fore many points still remain outside of any hypersphere. These

points which are outside give false cluster groups and thereby in-

crease the function evaluations later tremendously. Let us take the

I.
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following function as example: f(x 1 1 x2 ) = (1xll-l)2 + (jx2 J-2)
2

-4 < x 1 ,x 2 < 4.

There are four minima with function value f = 0 and coordinates

(-l,-2),(-1,2),(1,-2),(1,2). All these clusters lie quite far a-

part and our procedure can obtain all of them very quickly. How-

ever, if f(xlx 2 ) = (Ox1 - 0.1)2 + (1x 21 - 0.5)2 this procedure

will lead to one minimum point only since all four points (0.1,0.5),

(0.l,-0.5),(-0.l,0.5) and (-0.1,-0.5) are lying on a very small

rectangle.

After separating the cluster the next biggest task is to find

the actual minimum in each cluster group. Any local optimizing

method may be used. However, Nelder and Mead Simplex Search method

is the most efficient one for non-differentiable functions. We have

used Nelder and Mead Simplex Search method [4] in our program. The

* Nelder and Mead Simplex Search requires m + 1 points for m-dimension-

al space and they may not lie on the same hyperplane. Therefore,

each cluster group, or the hyperspheres which embrace the cluster

groups must include at least m + 1 points to start the initial

simplex. So, not only is the counting of points necessary in each

cluster but also sometimes the points must be regenerated if the

points fall short.

The checking of collinearity is another important task in

Simplex Search method. If the simplex repeats itself for a specific

number of times, this has to be modified to prevent from collaps-

ing the simplex. One way to solve this problem is to replace a

point from the collapsing simplex by a point which lies on the or-

thogonal direction to the hyperplane.
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The Choice of the Number of Retained Points:

The number of retained points may depend on the size of the

domain and as well as the number of variables. Suppose we start

with fifty points; fifty functional evaluations are performed and

one point with lowest functional value is retained. If one wants

to retain 50 points, 2500 function evaluations are required. There-

fore, the number of function evaluations is very high where as stor-

age requirement is comparatively less.

Constraints:

All the global optimization problems may be regarded as con-

strained in the sense that the search is confined within the initi-

ally prescribed domain. If any point falls out of this domain,

that point has to be discarded. When additional constraints are

imposed, then, depending on the number and complexity of these con-

straints, a sufficiently large number of points has to be selected

to insure that a reasonable proportion of points from the totality

of trial points be included.

The program is written in FORTRAN IV and several examples are

discussed. Since we are using Simplex Search Method, the number of

dimensions must be more than one. The program is attached in Ap-

pendix B.

Example 1

The function to be minimized is

f(x,y,z) = (x - y + z)2 + (-x +y +z) 2

+ (x + y - z)2

- 1 < X, y, z < 1I
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It is easy to show that f is a strictly convex quadratic function

with an unique minimum at (0,0,0) and f = 0.

After 2732 iterations, we have

f= 0

x= 0

y= 0

z= 0

Actual values: f = 0, x = 0, y = 0, z = 0

The method of systematic search takes 12096 iterations to arrive

at this result.

In this connection it must be pointed out that in using the

systematic search method, we have tried to adhere to standardized

values for the number of initial grid points and the number of

crossings. Since the function is NON-NEGATIVE and the actual opti-

mal point is (0,0,0), the method of bisection would yield the

answer on the very first bisection (27 evaluations at most!). Hence

the computer operator would STOP the computer after ONLY 27 evalu-

ations because he sees that f already attains 0 [and can never be

improved] after 27 evaluations.

Example 2

This example is used to compare the result obtained by the

method systematic search (discussed in this paper, Example 19,

Table 3) and the actual values. The function is

f(x,y,z) = Ix-li + ly-l.51 + 16z-lj.

0 < x, y < 3, 0 < z < 1.5.

Actual solution:

Min(f(x,y,z) = 0

x = 1, y = 1.5, z = 0.1666...
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By the Systematic Search Method:

Min(f(x,y,z) = 0.00390625

x = 1, y = 1.5, z = 0.16605625

Number of evaluations: 18752

By the Random Search Method:

Min(f(x,y,z) = 0.000001326

x = 1, y = 1.5, z = 0.166667

Number of evaluations: 3008

Example 3

As another example, let us take the following function which

was chosen by both Becker and Lago and Price's CRS algorithm (with

additional constraint):

= 9-8xl-62-4x+2x +2x 2

f(xl1 x21 x3) 9-x-x 2 4x3+2 1+ 2

+x2+2xlx2 +2xlx 3

0 < xlX2 <3, 0 < x3 < 1.5.

The actual solution is

f = 0, xl= 1, x 2 = 1, x 3 = 1. The Random Search method achieves

this solution in 2686 evaluations where f = -0.1192xlt: -06

xI = 1, x2 = 0.9999, x3 = 1

The method of systematic search takes 14144 evaluations.

Example 4

As a final example, we like to consider the following func-

tion to obtain all the four minima. Becker and Lago and Price also

discussed a similar function. Their function was

f(xlx 2 ) = (IxlI - 5)2 + (Ix2 1- 5)2.

Price obtained all the four minima around 0(10-6) after 5000

- . -
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evaluations but not obtained the coordinates. We take

f(xl,x 2 ,x3 ) = (1xlx - 5)2 + (1x2 1 - 5)2

+ (x 3 - 1)2

-10 < xl,x 2 ,x3 < 10.

All the four minima are obtained after 4010 evaluations:

Function Value Coordinates

0.8298x10-1 0  xI  x2  x3

0.244x10- 9  5.0 5.0 1.0

0.1591xi0- 9  -5.0 -5.0 1.0

0.1699xi0- 9  -5.0 5.0 1.0

5.0 -5.0 1.0

-Actual minimum is of course 0 at all these four points.

The computer printout of the unified program is enclosed in

the Appendix B.

Conclusion:

The Random Search Method described in this paper is not really

a Random Search. Besides the initial point - generation technique,

everything later becomes more systematic than random. The method

seems to be very efficient for problems wherever the Nelder and

Mead Simplex Search method applies. It suffers a serious setback

if some of the minima are very 'close' to each other. How close is

very 'close'? This is an open question. One may use different lo-

cal optimization techniques to avoid this situation. The problem

of collapsing simplex may be handled as suggested in this paper.

Examining the program, one discovers that the storage require-

ment is not as great as it first appears. All the initial points
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generated need not be saved. We need only to save the number of

retained points which actually form clusters.

The work on the Method of Systematic Search has generated some

mathematical theory and, it appears that more theoretical develop-

ments may be possible. Some of the advantages of the systematic

search method are:

(1) it is applicable to functions of a single variable

(2) it is direct

(3) it is easy to execute (the problems of simplicial collapse,
etc. do not appear)

(4) it is independent of other search procedures already in exis-
tence

(5) it goes after the global optimum without first calculating
local optima

(6) it is not sensitive to 'nearness' of the local optima to each

other

The method suffers from the standpoint of being computational-

ly uneconomical in that the number of evaluations increases geome-

trically with an increase in the number of variables. Also the

method of systematic search does not, in general, obtain all the

local minima. This, in turn, may lead to some doubt as to where

the actual global minimum occurs.

This is a serious problem attributed to all procedures which

find global minimum without calculating derivatives such as the

method of Becker and Lago and Price's Controlled Random Search Pro-

cedure. However, the method of Random Search appears to overcome

this problem.

Summary of Most Important Results:

(a) The following three theorems have been established:

(1) Theorem 1: Let f(x,y) be a real valued function which is
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Continuous on a compact domain D. Then

Max f(x,y) = Max r Max f(x,y) ' where for each fixed x,
(x,y) ED xEDyf yEDx)t

Dx = {y:(x,y)E D} and for each fixed y, Dy = {x:(x,y)ED}.

(2) Theorem 2: Let f(x,y) be continuous on the unit square S. For

each a e [0,1], define h(a) = Max f(a,y). Then the function h:

[0,1] - R is continuous.

(3) Theorem 3*: Let f(x,y) be a real valued continuous function on

the unit square S = {(x,y):0 < x,y < 1}. Additionally suppose that

for each a e [0,1], the maximum of f(a,y) over y occurs at only

one value of y, say Max f(a,y) = f(a,y*(a)). Then the assignment

a - y*(a) defines a continuous function y*:[0,1] - [0,1].

(b) A complete program to find the various cluster groups of a

multimodal non-differentiable continuous function defined on a com-

pact domain and to pinpoint the minimum value of the function at

each cluster group using local optimizing technique is written.
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PROGRAM ONE (VARIABLE) (See Example #1)

1 CONS = I.E 20

10 INPUT "N" : N

20 INPUT "START & END POINT" : B,E

30 FOR X = B TO E STEP .5AN

40 A = 100*(X -X A 2) A 2 + [6.4*(X-.5)A 2 - X - .6] A2 GOSUB 100

50 NEXT X

55 GOTO 110

100 IF A < CONS THEN CONS = A :: XO X :: PRINT "ANSWER"; CONS

PRINT "X"; XO PRINT RETURN ELSE RETURN

110 END
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PROGRAM TWO (VARIABLE) (See Example #10)

X =ROW ;Y = COLUMN

5 INPUT "INIT GRID?" :IG CONS = 1. E + 100

15 INPUT "CROSSING" LOOP INPUT "N" :CUTTER INPUT

"ROW BEGINNING" RB ::INPUT "ROW END" :RE INPUT

"COLUMN BEGINNING" :CB ::INPUT "COLUMN END" CE

20 Ri = RB GOSUB 80

30 FOR L123 =1 TO LOOP

35 FOR COL =CB TO CE STEP .5A CUTTER ::ANSWER =100*

((COL- R1A 2) 2) + (6.4* ((COL - .5) A 2) - Ri .6) A 2

GOSUB 65 ::NEXT COL

45 FOR ROW = RB TO RE STEP .5 ACUTTER ::ANSWER =100*

((Cl - ROWA2)A2) + (6.4*((C1 - .5)A2 - ROW -. 6)A2

GOSUB 70 ::NEXT ROW

55 NEXT L123

60 GOTO 100

65 IF ANSWER <CONS AND R1 > COL AND COL + R < 1iTHEN

CONS = ANS Cl =COL ::PRINT "ANSWER" ; CONS

PRINT "ROW" ;Ri PRINT "COLUMN" ; Cl

*66 RETURN

*70 IF ANSWER <CONS AND ROW > C1AND Cl+ ROW < 1 THEN CONS=

ANSWER :: R1 ROW :: PRINT "ANSWER" :CONS ::PRINT

"ROW" ;R1 PRINT "COLUMN" ;Cl

71 RETURN



30

PROGRAM TWO (VARIABLE) (Continued)

75 IF ANSWER < CONS AND ROW > COL AND ROW + COL < 1 THEN

CONS = ANSWER

RI = ROW : Cl = COL :: PRINT "ANSWER" ; CONS :: PRINT "ROW" ;

RI :: PRINT "COLUMN" : Cl

76 RETURN

80 FOR COL = CB TO STEP (CE-CB)/IG

85 FOR ROW = RB TO RE STEP (RE-RB)/IG :: ANSWER = 100*

((COL-ROWA2)A 2) + (6.4* ((COL- .5)A2- ROW - .6) A2

GOSUB 75 :: NEXT ROW

90 NEXT COL

95 RETURN

100 END

4i



PROGRAM THREE (VARIABLE) (See Example #19) 3

X DEPTH; Y =COLUMN ;ZROW

1 CONS 1 .E 10

10 CALL CLEAR

20 INPUT "INITIAL GRID" IG

30 INPUT "ROW START & END" :RB,RE

40 INPUT "COLUMN START & END" ;CB,CE

50 INPUT "DEPTH START & END" DB,DE INPUT "LOOP":L

60 INPUT "N" N[

70 FOR DEPTH =DE TO DE STEP (DE-DB)/IG

80 FOR COL = CB TO CE STEP (CE-CB)/IG

90 FOR ROW = RB TO RE STEP (RE-RB)/IG *: A =ABS(DEPTH-1) +

ABS(COL - 1.5) + ABS (6* ROW - 1) ::GOSUB 500 ::NEXT ROW

100 NEXT COL :: NEXT DEPTH

105 PRINT "OUT OF SUBPROGRAM"

106 FOR L1= 1TO L

110 FOR DEPTH =DB, TO DE STEP .5A N :: A = ABS (DEPTH -1) +

ABS (COLO -1.5) + ABS(6* ROWO -1) ::GOSUB 600 NEXT DEPTH

120 FOR COL =CE TO CE STEP .5A N A =ABS (DEPTHO -1) +

ABS (COL -1.5) + ABS(6* Rowo - 1) ::GOSUB 700 NEXT COL

130 FOR ROW - RB TO RE STEP .5A N :: A =ABS(DEPTHO - 1) +-

ABS (COLO - 1.5) +- ABS(6* ROW - 1) GOSUB 800 NEXT ROW

134 PRINT Li

135 NEXT Li

140 END
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PROGRAM THREE (VARIABLE) (Continued)

500 IF < CONS AND DEPTH + COL + 2* ROW < 3 THEN DEPTHO = DEPTH

ROWO = ROW :: COLO = COL :: CONS A :: GOSUB 1000

RETURN ELSE RETURN

600 IF A < CONS AND DEPTH + COLO + 2* ROWO < 3 THEN CONS = A

DEPTHO = DEPTH :: GOSUB 1000 :: RETURN ELSE RETURN

700 IF A < CONS AND DEPTHO + COL + 2* ROWO < 3 THEN COLO = COL

:: CONS = A GOSUB 1000 :: RETURN ELSE RETURN

800 IF A < CONS AND DEPTHO + COLO + 2* ROW < 3 THEN CONS = A

ROWO = ROW :: GOSUB 1000 :: RETURN ELSE RETURN

1000 PRINT "ANSWER"; CONS: "DEPTH";DEPTH:"COLUMN";COLO:"ROW";ROWO

PRINT :: RETURN

I
.1
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P
00100 C FIND ABSOLUTE MINIMUM OF NON-DIFFERENTABLE POUNED
00200 C FUNCTION WITH OR WITHOUT CONSTRAINT
00300 DIMENSION A(3,50,50),FMAX(50),CMAX(50,3),F(50y50)yCF(50,

00400 1 MAX(50,50),X(50),Y(50),YMAX(50,50),CYMAX(50,50,3),FMAX1(

00500 2 P(3) PCMAX1 (50,3) ,CFAX(50,3) ,CL1 (50,50) FCL(50) ,CFCL(50,3

00600 3 CMAX2(50,3) ,FMAX2(50) ,CL(50,-50,3) .Dl(6),
00700 4 E(3)
00800 N=20
00900 I1=6
01000 12=3
01100 OPEN(UNIT=20,OFIL-E'=*INl.DAT')
01200 OPEN(tJNIT=21PFILE='RES.OJT')
01300 IUIT=20
01400 IU=5
01500 C READ DOMAIN PARAMETER
01600 READ(IUIp*)(D(I) ,I=lv6)

01700
01800 5 FORMAT(6F5.1)
01900 RAD=4
02000 KOIJNT=0
02100
02200 C INITALIZE THE ARRAY
02300 N=50
02400 DO 7 K1,P1291
02500 7 A(Kv1,i)=D(K)
012600 C CALCULATE EPSILON VALUES
02700 C
02800 DO 8 1=1,12p1
02-900 8 E(I)=(D(I+3)--D(l))/50.0
03000 C
03100 C GENERATE COORDINATES
03200 c

03300 DO 40 J1,rNr1
03400 DO 30 1=19NY1
03500 DO 9 K=1,12y1
03600 9 A(KIvJ)=A(K,1v1)*(-1 )**( I*J*K)+I*E(K)*(-1 )**I+J*E(K)*(-
1)
03700 1 **J+K*E(K)*(-1)**K
03800 C
03900 C CHECK IF EXCEEDS DOMAIN
04000 C
04100 DO 25 K=1912p1
04200 IF(A(KPIPJ).LE.D(K)) A(KIJ)=D(K+3)-J*E(K)
04300 IF(A(KPIPJ).OE..D(K+3)) A(KvIJ)=D(K)+J*E(K)
04400 25 CONTINUE
04500 C
04600 C CALCULATE THE FUNCTIONAL VALUES
04700 C
04800 NI=J
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04900 1(1=I
05000 F( I J)=CAL(AvK1 ,Nl)
05100 KOUNT=KOUNT+l
05200 C WRITE( IU,26) (A(K, I J) ,K1 ,12) F( I J)
05300 26 FORMATr(4Xt3(EIO.4v4X) ,4XEIO.4/)
05400 30 CONTINUE
05500 C
05600 C CALL SUBROUTINES TO FINED MIN OF THE 50 POINTS JUST EVALA
TED .
05700 C
05800 K=J
05900 13=I1
06000 CALL FMAXI (APFPFMAXPCMAXYKPN, 13)
06100 C
062-00 C1 CALCULATION TO START NEXT SET OF POINTS
06300 C
06400 AJ=J

06500 AJ=AJ/50.
06600 DO0 35 K=1,12pl
06700 35 A(K,1,1)=A(KY19J)+AJ*(-1 )**J
06800 40 CONTINUE
06900 C
07000 C OUTPUT MINIMUN VALUE ACOORDINATES
07100 C
072-:00 WRITE(IUY45)
07300 45 FORMAT(//y5XP'VALUE OF THE FUNCTION'v5Xv'FIRST COORDINAT
F? ,5X, 'SECOND
07400 1COOREINATE'v5XP'THIRD COORE'INATE'v/)
07500 DO 50 I=1,Np1
07600 50 WRITE(IU955) FMAX(I)v(CMAX(IvK)rK=1,12)
07700 55 FORMAT(5XE11 .5,5XE11 .5,SXE11 .5,5XE11.5)
07800 C
07900 C CALL PLOTTING ROUTINE
08000 C

08100 DO 200 J=1,4v1
08200 JJ
08300 CALL MA2CAPMXFA~CA~~JP2
08400 GO TO (60r62r64p67)J
08500 60 WRITE(IUP61)J
08600 61 FORMAT(1OXq' GROUP FI3)
08700 hRITE(IU965) FMAX2(J)P(CMAX2(JPK)PK=1I2)
08800 65 FORMAT(5XE12.4,E12.4,E12.4pE12.4p/)
08900 00 TO 80
09000 62 bRITE(IUP61)J
09100 (RTE(1Uv65)FMAX2(J),(CMAX2(JiK)gt(1i12)
09200 00 TO 80
09300 64 IRITE(IUP61) J
09400 WRITE(IU,65) FMAX2(J),(CMAX2(JvK)vK=1I2)
09500 00 TO 80
09600 67 IRITE(IUP61)J
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09700 WRITE(IU,65)FMAX2(J),(CMAX2(J1(),K=1,12)
09800 s0 K=O

09900DO4 ipl
10000 IF(FMAX(I).EQ.9.1E+10)GO TO 84
10100 DIST=0.0
10200 DO 81 1(1=1912p1
10300 P(K(I)=CMAX2(J(I )-CMAX(IKI)
10400 81 DIST=DIST+(P(Kl)**2)
10500 O=SQRT(DIST)
10600 IF(O.GE.RAD) GO TO 84
10700 (=1(+1
10800 FCL(1()=FMAX(I)

10900 DO 82 1(1=1,1291
11000 82 CFCL(KPK1I)=CMAX(I,1(I)
11100 FMAX(I)=9.1E+10
11200 DO 83 1(1=1,12v1

11300 83 CMAX(I,1(I)=9.1E+10
11400 84 CONTINUE
11500 K=1(+l
11600 FCL(K)=FMAX2(J)
11700 DO 85 1(1=1,12,1
11800 85 CFCL(K,1(I)=CIIAX2(J,1(I)
11900 FMAX2(J)=9.1E+10
12000 IF(1( .E~o 0) GO TO 220
12100 GO TO(l0l,1l1,121,131)J
12200 101 1(1=1
12300 DO 106 1=1,1(1,1
12400 CL1(JYI)=FCL(I)
12500 FCL(I)=0.
12600 DO 105 1(1=1,12p1
12700 CL(JvI,1(I)=CFCL(IPKI)
12800 105 CFCL(IPKI)=0.

12900 106 CONTINUE
*13000 GO TO 200
13100 111 1(2=1(
13200 DO 116 I1IF(2p1

1300CLI (J I )=FCL( I)
13400 FCL(I)=0.

*13500 DO 115 K(1=1P12pl
13600
13700 CL(JFIPKI)=CFCL(I1(I)
13800 115 CFCL(IYKI)=0.
13900 116 CONTINUE
14000 00 TO 200
14100 121 K3=K
14200 DO 126 11rPK391
14300 CL1(JpI)=FCL(Z)
14400 FCL(I)s06
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1500 DO 125 1(1=1,12w1i 14600 CL(JPIKI)=CFCL(IPK1()
14700 125 CFCL(IrKI)=0.
14800 126 CONTINUE*
14900 0O TO 200
15000 131 K4=K
15100 DO 136 1=1,1(4p1
15200 CL1(JvI)=FCL(1)
15300 FCL(I)=0.
15400 DO 135 1(1=1,12p1
15500 CL(JIKI)=CFCL(IYKI()
15600 135 CFCL(I,1(I)=O.
15700 136 CONTINUE
15800 200 CONTINUE
15900 C
16000 C WRITE THE FUNCTION--VALUE AND THE COORDINATES Or THE WHOL
E CLUSTER

16100 C
16200 220 IF(1(1.EQ.0) GOTO 225
16300 WRITE(IUY222) 1(1
16400 222 FORMAT(IXP CLUSTER 'P13)
16500 DO 224 1=1,1(1,1
16600 224 WRITE( IUr*) CLi (1,1),(CL( 1,1,1() ,KI=1,12)
16700 225 IF(1(2.EQO0) GOTO 230
16800 WRITE(IUY226)K2
16900 226 FORMAT(10XP'CLUSTER ',13)
17000 DO 228 1=1,1(291
17100 228 WRITE(IUY*) CLI(2,I), (CL(2,Il1(I) ,KI=1,12)
17200 230 IF(K3.O) 00 TO 235
17300 WRITE(ruv232)K3
17400 232 FORMAT(IOXP'CLUSTER 'P13)
17500 DO 234 I=1I1(3p1
17600 234 WRITE(IUY*) CL1(3vI)v(CL(3vIvKI)v1(I=1,I2)

17700 235 IF(1(4#EQ.0) GO TO 240
17800 WRITE(IUY236) K(4
17900 236 FORMAT(19XP'CLUSTER 'P13)
18000 DO 238 I=1(4p1
18100 238 WRITE(IUP*) CL1(4rI)P(CL(4plpKI)vKI=1,12)
18200 240 WRrTE(IUP250)
18300 250 FORMAT(5Xp'MAX FUNCT 'P5XP'COORD TE-1'p5XP'COORD TE-2'r
!s- 5x,
18400 1 'COORD TE-3'9//) J
18500 1K0=I 18600 DO 350 J=1,4p1
18700 GO TO (302p306,310,314)J
18800 302 IF(K1.EQ#0) 0O TO 350
18900 JiaKl

*19000 I=J
19100 ICOUNT=0
19200 303 CALL SMPLEX(CL1PCLPCYMAXPYMAXDIJI12,ICOUNT)



37

P
19300 WRITE(IUP305)ICOUNT
19400 305 FORMAT(2Xv'GROJP ITERATION'y2XPI4)
19500 KK=KK+ICOUNT
19600 WRITE(IU9304) YMAX(,J,1)P (CYMAX(Jv1oKI),KI=1PI2)
19700 304 FORMAT(5XPE10.4y3(6XPE10.4) ,//)
19800 GO TO 350
19900 306 IF(K2.EO,0) GO TO 350
20000 Jl=K2
20100 I=J
20200 GO TO 303
20300 310 IF(K3.EQO0) GO TO 350
20400 J1=K3
20500 I=J
20600 GO TO 303
20700 314 IF(K4.EQ.0) GO TO 350
20800 JI=K4

120900 I=J
21000 GO TO 303
211100 350 CONTINUE
21200 KNT=KK+KOUNT
21300 WRITE(IUp355)KNT
21400 355 FORMAT(1OXP'TOTAL ITERATION'v2Xv I5)
21500 CLOSE(UNIT=20vFILE='INi .DAT')
21600 CL-OSE(UNTT=21PFILE='RES.OIJT')
21700 STOP
21800 END
21900 SUBROUTINE MAX2(CMAX3,FMAX3,FAX29CFAX2,MvLyII)
22000 DIMENSION FAX2(50),CMAX3(50,3),FMAX3(50)rCFAX2(50,3),TEM
(3)
22100 T1=3
22200 DO 10 I=1,Mf1
22300 IF(FMAX3(I).GE.FMAX3(1)) 0O TO 10
22400 TEMP=FMAX3(1)
* P
22500 FMAX3(1)=FMAX3(l)
22600 FMAX3(I)=TEMPI22700DO 5 K=1v391
22800 TEM(K)=CMAX3(IPK)
22900 CMAX3(lvK)=CMAX3(IPK)[23000 CMAX3(IPK)=TEM(K)
23100 5 CONTINUE
23200 10 CONTINUE
23300 CI.23400 C STORE THE CURRENT LOWER VALUE
23500 C
23600 FAX2(L)=FMAX3( 1)[23700 FMAX3(1)=9#1E+10
23800 DO 12 K=lp3p1
23900 CFAX2(LPK)=CMAX3(1PK)
24000 12 CMAX3(lvK)=9#1E+10

*k-A
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24100 RETURN
24200 END
24300 SUBROUTINE FMAXI(BHPFMAX1PCMAX1'L..N1PL3)
24400 DIMENSION B(3,50,5O)vH(50p50)tFMAX1(5O)PCMAX1(50,3),TEM(
3)
24500 L3=3
24600 DO 10 I=1,N1Y1
24700 IF(H(IL).GE.H(1,L)) GO TO 10
24800 TEMP=H(1vL)
24900 H(IPL)=H(IPL)
25000 H(IL)=TEMP
25100 DO 5 Kt(=1,L3,1
25200 TEM(KK)=B(KKP 1,L)
25300 B(KK, 1 L)=B(K P I L)
25400 5 B(KKPIPL):=TEM(KK)
25500 10 CONTINUE
25600 C

25700 C STORE 'THE CURRENT LOWEST VALUE AND COORDINATES
25800 C
25900 FMAX1(L)=H(1,L)
26000 DO 12 KK=1,L3v1
26100 12 CMAX1(LPKK)=B(KK,1PL)
26200 RETURN
26300 END
26400 C
26500 C LOCAL OPTIMIZATION USING NELDER AND MEADS SMPLEX METHOD
26600 cc
216700 SUBROUTINE SMPLEX(ACL1,CACL1,CZMAXZMAXvDDLMI4pKOJT)
26800 DIMENSION ACL1(50950)PCACL1(50,50,3)PCZMAX(50,50p3)?ZMAX
(50P50) r
26900 1 TEMPO(50)PDD(6),SUM2(3)PX2(4y4)vSUM(3)

2700DIMENSION BST(4,4) ,CBST(4,4,3) YCR(493) ,CP(4,3) ,PIMG(4,3)

27100 1 FCR(4),FPMG(4),FCW(4)PFEX(4)PCW(4,3)
27200 DIMENSION X1(4)

27300 DIMENSION EX(4,3)
27400 RADD=0.00004
27500 14=3
27600 ITER=0,
27700 N2=14+1
27600 IU=5
27900 DO .3 I=1,N2#1
28000 BST(Lpl)=+*91E+10
28100 DO 3 K=1,14vl
29200 3 CBST(LIPK)=(+1)**K*0#91E+11
28300 WRITE(IU,*)BST(LP 1) BST(L,2) ,BST(L,3) PBST(LF4)
28400 C
26500 C FIND THE LOWEST POINT AND THE COORDINATES ItST(Lp1)
28600 C
29700 WRITE(IUP5) M
28800 5 FGRMAT(10XP'THE NUMBER lS 'rZ4)
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28900 DO 10 I=1,mp1
29000 IF(ACLI(LpI).EQ.0.91E+10) GOTO 10
29100 IF(BST(Lp1>.LE#ACL1(LI)) GO TO 10
29200 TEMP=BST(Lv 1)
29300 BST(Lv1)=ACL1(LvI)
29400 ACL1(LPI)=TEMP
29500 DO 8 K1,1I4p1
29600 TEMPO(K)=CBST(LP1,K)
29700 CBST(LPIPK)=CACL1(LPIIK)
29800 8 CACL1(LPIPK)=TEMPO(K)
29900 10 CONTINUE
30000 WRITE(IUP*)BST(Lpl)
30100 C
30200 C FIND THE SECOND BEST
30300 C
30400 DO 20 I=19MY1

30500 IF(ACL1(LvI).EQE'ST(Lp1)) GO TO 20
30600 IF(ACL1(LPI) .EQ. 0.91E+10) GOTO 20
30700 IF(BST(LP2).LE.ACLI(LyI))GO TO 20
30800 TEMP=EIST(L?2)
30900 BST(LP2)=ACL1(LYI)
31000 ACL1(LI)=TEMP
31100 DO 16 KI=1,4,1
31200 TEMPO(K)=CBS*T(L,2vK)
31300 CBST(Lp2pK)=CACL1(LPIPK)
31400 16 CACL1(LpIvK)=TEMPO(K)
31500
31600 20 CONTINUJE
31700 WRITE(IUP*) BST(L,2)
31800 C
31900 C FIND THE THIRD LOWEST POINT
32000 C

32100 DO 26 I=1,Mv1
32200 IF(ACL1(LrI).EQ*BST(Lv1)) GO TO 26
32300 IF(ACL1(LvI).ea~bst(1,2)) go to 26
32400 IF(ACL1(LpI).EO.0.91E+10) GOTO 26
32500 IF(BST(LP3).LTACL1(LpI)) GO TO 26
32600 TEMP=BST(LP3)
32700 BST(LP3)=ACL1(LYI)
32800 ACL1(LpI)=TEMP
32900 DO 25 K=1914,1
33000 TEMPO(K)=CBST(Lv3pK)
33100 CBST(Lp3pK)=CACL1(LPIPK)
33200 25 CACL1(LPIPK)=TEMPO(K)
33300 26 CONTINUE
33400 WRITE(IUP*) BST(LP3)
33500 c
33600 C FIND THE FOURTH LOWEST POINT AT THIS TIME
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33700 c
33800 DO 29 I=lvMvl
33900 IF(ACL1(LI),EgBST(L,1)) 6O TO 29
34000 IF(ACL1(LvI).EQ.BST(Lv2)) 0O TO 29
34100 IF(ACLl(LpI).EQ.BST(Lp3)) 00 TO 29
34200 IF(ACLI(LI).GE.EIST(L,4)) GO TO 29
34300 IF(ACLI(Lvl) .EQ* 0.91E+10) GOTO 29
34400 TEMP=BST(LP4)
34500
34600 BST(LP4)=ACLI(Lpl)
34700 ACLI(LpI)=TEMP
34800 DO 28 K=1,14v1
34900 TEMPO(K)=CBST(Lv4pK)
35000 CBST(Ly4pK)=CACL1 (L, I K)
35100 28 CACL1(LPTPK)=TEMPO(K)
35200 29 CONTINUE

35300 WRITE(IU9*) BST(Lv4)
35400 C
35500 C THE SIMPLEX FORMED BY BST(Lrl)rBST(Lv2)vBST(Lr3)
35600 C BST(LP4) WHICH
35700
35800 C IS THE BIGGEST ONE SHOULD BE REMOVED
35900 WRITE(IUP30) BST(L,1) ,BST(L,2) ,BST(L,3) ,BST(LP4)
36000 30 FORMAT(2XF1O.4,2XF1O.4p2XF1O.4,2XF1O.4)
36100 C
36200 C SEE IF THE EXIT CRITERIA IS SATISFIED
36300 C
36400
36500 31 DO 35 K=lP14vl
36600 SUM(K)=0.
36700 DO 35 I=1,N2pl
36800 35 SUM(K)=SUM(K)+CBST(L, I K)

36900 DO 36 k=1,14,1
37000 36 Xl(K)=SUM(K)/4#
37100 DIF=0.
37200 DO 40 I=1,N2,1
37300 DO 39 K2=1,14pl
37400 X2(IK2)=CBST(LPIPK2)-X1(K2)

*37500 39 difdif+x2(iPK2)**2
37600 40 CONTINUE
37700 DIFB=SORT(DIF)
37800 ITER=ITER+1
37900 IF(DIFB.LE.RADD) 00 TO 500
38000 WRITE(IUP43) DIFB
38100 43 FORMAT(4XP'DIFFERENCE= 'YE12*5)
38200 C REMOVE THE HIGHEST FROM THE SIMPLEX
38300 C THE HIGHEST POINT IS THE BST(Lv4)
38400 C THE MEDIAN OF THE POINTS BST(Lv1)9BST(Lp2)vBST(Lv3)
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38500 DO 48 KIPI,4,1
38600 SUM2(K)=0.
38700 N3=N2-1
38800 DO 46 I=1,N391
38900 46 SUM2(K)=SUM2(K)+CBST(LP I K)
39000 48 CP(LPK)=SUM2(K)/3.
39100 C
39200 C FIND THE IMAGE OF BST(LY4) THOUGH CP
39300 C
39400 DO 50 K=1,14,i
39500 50 P'IMG(LK)=2.*CP(LYK)-CBST(Lt4vK)
39600 C
39700 C CHECK IF EXCEEDS THE DOMAIN OF THE FUNCTION
39800 C
39900 DO 52 K=1,I4yl
40000 IF(PIMG(LI().,LT.EID(K)) PIMG(LK)=DD(K)
* P
40100 52 IF(PIMG(LFK).GT.E'D(K-f3)) PIMG(LYK)=DD(K+3)
40200 C
40300 C EVALUJATE THE FUCTION AT THESE POINTS
40400 C
40500 L3:=L
40600 M1=14
40700 FPMG(L)=XFCT(F'IMGPMlL3)
40800 KOUT=KOUT+1
40900 write(iup54) fpml(1)
41000 54 FORMAT(4X,'FPMG= PE12.4)
41100 IF(FPMG(L).LT.BST(Ly1)) GO TO 200
41200 IF(FPMG(L).LT.BST(LP2)) GO TO 100
41300 IF(FPMG(L).GT.BST(LY4)) GO TO 60
41400 DO 56 K=1,14pl
41500 56 CR(LI )=(3*CP(LYK)-CBST(Lv4vK> )/2.
41600 C

41700 C CHECK IF EXCEEDS DOMAIN
41800 C
41900 DO 58 K=lPK4p1
42000 IF(CR(LYK).LT.DD(K)) CR(LYK)=DD(K)
42100 58 IF(CR(LYK) *GT. DD(K+3)) CR(LYK)=DD(K+3)
42200

*42300 C
42400 C EVALURATE THE FUNCTION

*42500 C
42600 M1=14
42700 L3=L
42800 FCR(L)=XFCT(CRPM1 ,L3)
42900 KOUT=KOUT+1
43000 BST(LP4)=FCR(L)
43100 DO 59 K=1,14,1
43200 59 CBST(Lt4pK)=CR(LPK)
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43300 GO TO 400
43400 60 DO 65 K=l,14pl
43500 65 CW(LIO=(CP(LPK)+CBST(L,4,K) )/2,
43600 C
43700 C SEE IF EXCEEDS DOMAIN
43800 C
43900 DO 70 K=1,14t1
44000 IF(CW(LYK) .LT. DD(K)) CW(LrK)=D(K)
44100 70 IF(CW(LYK).GT. DD(K+3)) CW(LIO=DD(K+3)
44200
44300 M1=14
44400 L3=L
44500 FCW(L)=XFCT(CWYM1,L3)
44600 KOUT=t(OUT+1
44700 BST(LP4)=FCW(L)
44800 DO 75 KIy,4p1

44900 75 CBST(Lp4pK)=CW(LYK)
45000 GO TO 400
45100 100 BST(LP4)=FPMG(L)
45200 DO 110 K=1I4,1
45300 110 CBST(Lv4rK)=PIMG(LPK)
45400 00 TO 400
45500
45600 200 DO 220 K=1I4rl
45700 220 EX(LvK)=3.0*CP(LYK)-2.0*CBST(L'4,K)
45800 C
45900 C SEE IF EXCEEDS DOMAIN
46000 C
46100 DO 250 K5=1914,1
46200 IF(EX(LK5).LT. DD(K~5))EX(LK5)=DD(K5+3)
46300 250 IF(EX(LK5).GT.DD(K5+3)) EX(LYK5)=DD(K5+3)
46400

46500 M1=14
46600 L3=L
46700 FEX(L)=XFCT(EXM1,L3)
46800 KOUT=KOUT+1
46900 IF(FEX(L).LT.DST(Lv1)) GO TO 310
47000 WRITE(IU,255) FEX(L)

*47100 255 FORMAT(10XP'FEX='PE1O.4)
4200 00 TO 100
47300 310 BST(LP4)=FEX(L)
47400 DO 320 K=lpl4,1
47500 320 CBST(LP49K)=EX(LPK)
47600 400 DO 410 I=lPN2v1
47700 IF(BST(Lvl)*LT*BST(LPI)) 0O TO 410
47800 TEflP=BST(Ly1)
47900 BST(Lvl)=DST(LI)
48000 BST(Lpl)=TEMP
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48100 DO 405 K=1PI4p1
48200 TEMPO(K)=CBST(LPIPK)
48300 CBST(L, 1 K)=CBST(LP IPKO
48400 405 CBST(LPIPK)=TEMPO(K)
48500 410 CONTINUE
48600 DO 450 I=2,I42t1
48700 IF(BST(Lv2).LT.DSTr(LPI)) GO TO 450
48800 TEMP=BST(LP2)
48900 BST(L,2)=E4ST(LI)
49000 BST(LpI)=TEMP
49100 DO 420 K=1914vi
49200 TEMPO(K)=CBST(Lv2pK)
49300 CEST(Lp2yK)=CBST(L, 1,10
49400 420 CEST(LIPK)=TEMPO(K)
49500 450 CONTINUE

49600 IF(BST(Lr3).LT.E4S*T(L,4)) GO TO 460

49700 TEMP=BST(LY3)
49800 BST(LY3)=BST(Lr4)
49900 BST(LP4)=TEMP
50000 DO 455 K=1,14tl
50100 TEMPO(K)=CBST(Lv3pK)
S0200 CBST(Lt3pK)=CBST(Lv4yK)
S0300 455 CBST(Lp4pK)=TEMPO(K)
50400 460 IF(ITER.LT.10.)GOTO 31
S0500 ITER=0.
50600 BST(L,4)=(BST(L, I)+BST<L,2)+BST(Lv3)+BST(L,4) )/4.
50700 GO TO 400
50800 500 ZMAX(Lv1)=BST(LY1)
50900 DO 505 K=1,14v1
51000 505 CZMAX(LP1PK)=CBST(LP1PK)
51100 bRITE(IUY510) ZMAX(Lvl)w(CZMAX(Lv1vK)vK1lr14)
51200 510 FORMAT(1OXElO,4p3(E1O.4v4X) ,/)

51300 RETURN
51400 END
51500 FUNCTION XFCT(CIIPIP)
51600 DIMENSION C(4r3)
51700 II=3
51800 XFCT=9.0-8.0*C( IPPI1)-6.0*C( IP,2)-4.0*C( I
51900 1 P,3)+2.0*C(IP,1 )**2+2.0*C(IP,2)**2+C(IPP3)**2
52000 2 +fC( IP 1 )*C( IP,2)*2.0+2.0*C( IP, 1)*C( IP,3)
52100 RETURN
52200 END

*52300 FUNCTION CAL(C1,L3pN3)
52400 DIMENSION C1(3,50,50)
52500 CAL=9.0-8.0*Cl(1 ,L3vN3)-6.0*C1(2,L3tN3)-4.0*C1 (3,L3,N3)+
52600 1 2.0*Cl(1,L3,N3)**2+2.0*C1(2,L3,N3)**2+C1(3,L3,N3)**2
52700 2 +2.O*C1 (1 ,3,N3)*C1 (2,L3,N3)+2.0*C1 (1 L3,N3)*C1 (3,L3,N3)
52900 RETURN


